Fabrication of High Frequency (25–75 MHz) Single Element Ultrasonic Transducers

نویسندگان

  • J. M. Cannata
  • Kirk Shung
چکیده

The design and fabrication of high frequency single element ultrasonic transducers present a multitude of challenges for the transducer engineer, from size constraints to electrical impedance matching. This paper discusses the trade-offs involved in procedures used to fabricate lithium niobate (LiNbO3) and lead titanate (PbTiO3) transducers in the 25MHz to 75MHz range. Transducers of varying dimensions were built according to an f-number range of 2-3.5. Desired focal depths were achieved with use of either an acoustic lens or a spherically focused piezoceramic. Silver epoxy backing with an acoustic impedance of approximately 5.9 MRayls was used in all designs. All transducers were designed around a 50Ω send and receive circuit. Electrical tuning of the transducer to the receive circuitry was achieved by using an RF transformer and/or a length of coaxial cable. All transducers were tested in a pulse-echo arrangement using a Panametrics 5900PR pulser, a Wavetek function generator and a LeCroy digital oscilloscope. The bandwidth, insertion loss, and depth of focus were measured. Numerous transducers were fabricated with -6dB bandwidths ranging from 40% to 74%, and twoway insertion loss values ranging from -14dB to -28dB.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrahigh Frequency (100 MHz–300 MHz) Ultrasonic Transducers for Optical Resolution Medical Imagining

High resolution ultrasonic imaging requires high frequency wide band ultrasonic transducers, which produce short pulses and highly focused beam. However, currently the frequency of ultrasonic transducers is limited to below 100 MHz, mainly because of the challenge in precise control of fabrication parameters. This paper reports the design, fabrication, and characterization of sensitive broadban...

متن کامل

Piezoceramic Element Design and Fabrication for Ultrasonic Transducer of Gas Meter

Ultrasonic transducers play a significant role in generating and receiving the acoustic waves in ultrasonic flowmeters. Depending on the required accuracy, the ultrasonic transducers can be installed either in one pair or more in an ultrasonic flowmeter. The main part of an ultrasonic transducer is its piezoceramic element. In this work, four piezoceramic elements with different diameter to thi...

متن کامل

Finite Element Modeling of a Capacitive Micromachined Ultrasonic Transducer

Transducers based on piezoelectric crystals dominate the biomedical ultrasonic imaging field. However, fabrication difficulties for piezoelectric transducers limit their usage for complex imaging modalities such as 2D imaging, high frequency imaging, and forward looking intravascular imaging. Capacitive micromachined ultrasonic transducers (CMUTs) have been proposed to overcome these limitation...

متن کامل

Self-focused ZnO transducers for ultrasonic biomicroscopy.

A simple fabrication technique was developed to produce high frequency (100 MHz) self-focused single element transducers with sputtered zinc oxide (ZnO) crystal films. This technique requires the sputtering of a ZnO film directly onto a curved backing substrate. Transducers were fabricated by sputtering an 18 μm thick ZnO layer on 2 mm diameter aluminum rods with ends shaped and polished to pro...

متن کامل

Development of piezoelectric micromachined ultrasonic transducers

Piezoelectric micromachined ultrasonic transducers (pMUTs) are an example of the application of MEMS technology to ultrasound generation and detection, which is expected to offer many advantages over conventional transducers. In this work, we investigate pMUTs through novel design and fabrication methods. A finite element (FE) model, with original tools to measure device performance, was develo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000